ABSTRACT

Microorganisms are considered as the primary etiological agent in the spread of infection and destruction of carious teeth. Root filling of poor quality results in breakdown of periodontal tissue. There is a retarded or impaired periodontal tissue healing subsequent to periodontal therapy of endodontically treated teeth with periapical pathology. Antimicrobial agents are added to root canal sealers to improve their antibacterial effect. Several root canal sealers based on epoxy resin, calcium hydroxide, and zinc oxide eugenol are available; however, few sealers are effective against endodontic pathogens, especially strict anaerobes. The present review study compares the antimicrobial efficacy of different root canal sealers.

Keywords: Calcium hydroxide, Epoxy resin, Microorganism, Sealer, Zinc oxide eugenol.

Sources of support: Nil

Conflict of interest: None

INTRODUCTION

Microorganisms and their by-products are considered as the primary etiological agents in the spread of infection and destruction of carious teeth, and endodontic therapy is an invaluable measure to preserve teeth. One of the main aims of endodontic therapy is complete obturation of the root canal system resulting in sterility of the root canal, thereby preventing recolonization of bacteria and recontamination of root canal space. According to Grossman, one of the ideal requirements of root canal sealer is that it should be bacteriostatic. Root filling of poor quality results in breakdown of periodontal tissue. There is a retarded or impaired periodontal tissue healing subsequent to periodontal therapy of endodontically treated teeth with periapical pathology. Antimicrobial agents are added to root canal sealers to improve their antibacterial effect. Several root canal sealers based on epoxy resin, calcium hydroxide, and zinc oxide eugenol are available; however, few sealers are effective against endodontic pathogens, especially strict anaerobes. The present review study compares the antibacterial efficacy of different root canal sealers.

CALCIUM HYDROXIDE-BASED SEALERS

The antibacterial efficacy of calcium hydroxide sealer is because of its ability to release hydroxyl ions and raise pH. Elimination of bacteria depends on ionization that releases hydroxyl ions, causing an increase in pH. A pH greater than nine may reversibly or irreversibly inactivate cellular membrane enzymes of the microorganisms, resulting in a loss of biological activity. Antimicrobial action is influenced by its speed of dissociation into calcium and hydroxyl ions. This dissociation into hydroxyl ions creates a high pH environment, which inhibits enzymatic activities that are essential for microbial metabolism, growth, and cellular division.

ZINC OXIDE EUGENOL-BASED SEALERS

Eugenol is a potent antibacterial agent. It is a phenolic compound acting on microbes by protein denaturation. The antimicrobial effect of zinc oxide eugenol cement was mainly attributed to the action of eugenol. Eugenol, a phenolic compound, acts on microorganisms by protein denaturation whereby the protein becomes nonfunctional.

EPOXY RESIN SEALER

Formaldehyde in epoxy resin sealer has an antibacterial action. Even small quantities of formaldehyde may act as an irritant impeding or retarding bacterial regeneration.
COMPARATIVE STUDY OF DIFFERENT SEALERS

According to Kaplan et al, the most effective antimicrobial sealer contains eugenol and formaldehyde. Results of in vivo study revealed that periapical tissues diminish the inhibitory effect of cement on bacterial growth. Canalda et al compared inhibition of growth of bacterial strains (Staphylococcus aureus, Escherichia coli, Candida albicans) produced by two root canal sealers with a calcium hydroxide base CRCS and sealapex, with those obtained with two zinc oxide eugenol sealers, Endomethasone and Tubiseal, and one epoxy resin, AH-26 sealer. The results of their study showed that antimicrobial efficacy attained with cements with a calcium hydroxide base is similar to that obtained with other cements. The paraformaldehyde component of zinc oxide eugenol cement increases the inhibition significantly. The greater inhibition obtained with endomethasone sealer is essentially due to its paraformaldehyde component, which spreads easily in the culture medium.

Mickel and Wright compared the growth inhibition of Streptococcus anginosus by calcium hydroxide sealers (CRCS, Sealapex, Apexit) with a zinc oxide eugenol-based sealer (Roth sealer) in a agar culture medium, and they concluded that Roth sealer had statistically significant larger mean zone of inhibition than calcium hydroxide sealer. All the sealers exhibited clinically relevant antimicrobial activity. It is likely that eugenol in the Roth sealer is responsible for its greater antimicrobial activity. There was no significant difference between calcium hydroxide sealers tested. These findings are in contrast to Canald, who found bacterial inhibition produced by Sealapex and CRCS was similar to that obtained by zinc oxide eugenol-based sealers. Al-Khatib et al found zinc oxide eugenol sealers to have more antimicrobial activity than calcium hydroxide sealer. They concluded that MCS, AH Plus, and Grossman’s sealer, Sealapex, Apexit on blood agar and Lawn technique. Roth 811 showed largest zone of inhibition, followed by Sealapex and Kerr EWT, whereas AH Plus had no antimicrobial activity. There was no difference in zones of inhibition between 24 and 48 hours time periods.

Orstavik investigated the antimicrobial activity of MCS (iodoform-containing sealer), AH Plus, Grossman’s sealer, Sealapex, Apexit on E. faecalis by direct contact test. They concluded that MCS, AH Plus, and Grossman’s sealer were effective in reducing the number of cultivable cells of E. faecalis. Ca(OH)2-based sealers – Sealapex and Apexit – were ineffective in this short-term experiment.

Gopikrishna et al evaluated the antimicrobial efficiency of a traditional ZOE-based sealer (Tubiseal) with iodoform incorporated ZOE-based sealer (Endoflas FS), a Ca(OH)2-based sealer (Apexit), and epoxy resin-based sealer (AH Plus and RC seal) against E. faecalis and E. albicans by agar diffusion test. Endoflas FS performed far better than other sealers against E. faecalis and E. albicans. Endoflas FS was followed by Tubiseal, Apexit which showed mild antimicrobial efficacy. AH Plus and RC seal showed no antimicrobial properties whatsoever.
Saleh et al19 observed colony forming units (CFUs) from infected, root canal-treated teeth and comparative results of antibacterial activity on \textit{E. faecalis} was found as follows:

AH Plus and Grossman’s sealer had equal antibacterial activity (mean CFU = 0). Glass-ionomer cement-based sealer Ketac endo (1.94) had highest antibacterial activity, this was followed by Apexit (1.40), followed by Roekoseal Automix (1.36) and Ca(OH)\textsubscript{2} (0.53).

Kayaoglu et al20 by direct contact test found the following results for antimicrobial efficacy: MCS > AH Plus > Grossman’s sealer > Sealapex > Apexit; while indirect test showed that: MCS > AH Plus > Grossman’s sealer > Apexit > Sealapex.

Sipert et al21 observed Sealapex and filled canal with antibacterial activity on \textit{E. faecalis} while EndoREZ had no such antimicrobial activity.

Antimicrobial efficiency of endo-fill root canal sealant and filling material was microbiologically evaluated. No zone of inhibition was seen around endo-fill against microorganisms like \textit{Staphylococcus pyogenes}, \textit{E. coli}, \textit{C. albicans}, and \textit{Pseudomonas aeruginosa}. Thus endo-fill was evaluated as inefficient microbiologically. Lee22 reported that endo-fill does not in itself cause lesion resolution.

CONCLUSION

The antibacterial component of endodontic sealers may be an essential factor to prevent the continuous growth of bacteria in the canal. The bactericidal or bacteriostatic activity of root canal sealers eradicates the remaining microorganisms and overcomes persistent residual infection. The present review study reveals that the dissociation of calcium hydroxide into calcium and hydroxyl ions creates a high pH environment, which inhibits enzymatic activities that are essential for microbial metabolism, growth, and cellular division. Eugenol in ZOE sealer is a potent antibacterial agent which acts on microbes by protein denaturation. Paraformaldehyde component and iodoform in modified ZOE sealer act as an oxidizing agent causing bacterial inhibition, and the antibacterial action of formaldehyde in epoxy resin sealer can be attributed to antimicrobial efficacy of the sealer.

REFERENCES